Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses.

Identifieur interne : 000124 ( Main/Exploration ); précédent : 000123; suivant : 000125

Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses.

Auteurs : Sohini Deb [Inde] ; Palash Ghosh [Inde] ; Hitendra K. Patel [Inde] ; Ramesh V. Sonti [Inde]

Source :

RBID : pubmed:32654337

Abstract

Xanthomonas oryzae pv. oryzae uses several type III secretion system (T3SS) secreted effectors, namely XopN, XopQ, XopX and XopZ, to suppress rice immune responses that are induced following treatment with cell wall degrading enzymes. Here we show that a T3SS secreted effector XopX interacts with two of the eight rice 14-3-3 proteins. Mutants of XopX that are defective in 14-3-3 binding are also defective in suppression of immune responses, suggesting that interaction with 14-3-3 proteins is required for suppression of host innate immunity. However, Agrobacterium-mediated delivery of both XopQ and XopX into rice cells results in induction of rice immune responses. These immune responses are not observed when either protein is individually delivered into rice cells. XopQ-XopX-induced rice immune responses are not observed with a XopX mutant that is defective in 14-3-3 binding. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicate that XopQ and XopX interact with each other. A screen for Xanthomonas effectors that can suppress XopQ-XopX-induced rice immune responses led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of Xanthomonas T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice.

DOI: 10.1111/tpj.14924
PubMed: 32654337


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses.</title>
<author>
<name sortKey="Deb, Sohini" sort="Deb, Sohini" uniqKey="Deb S" first="Sohini" last="Deb">Sohini Deb</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Palash" sort="Ghosh, Palash" uniqKey="Ghosh P" first="Palash" last="Ghosh">Palash Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patel, Hitendra K" sort="Patel, Hitendra K" uniqKey="Patel H" first="Hitendra K" last="Patel">Hitendra K. Patel</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sonti, Ramesh V" sort="Sonti, Ramesh V" uniqKey="Sonti R" first="Ramesh V" last="Sonti">Ramesh V. Sonti</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32654337</idno>
<idno type="pmid">32654337</idno>
<idno type="doi">10.1111/tpj.14924</idno>
<idno type="wicri:Area/Main/Corpus">000195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000195</idno>
<idno type="wicri:Area/Main/Curation">000195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000195</idno>
<idno type="wicri:Area/Main/Exploration">000195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses.</title>
<author>
<name sortKey="Deb, Sohini" sort="Deb, Sohini" uniqKey="Deb S" first="Sohini" last="Deb">Sohini Deb</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Palash" sort="Ghosh, Palash" uniqKey="Ghosh P" first="Palash" last="Ghosh">Palash Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patel, Hitendra K" sort="Patel, Hitendra K" uniqKey="Patel H" first="Hitendra K" last="Patel">Hitendra K. Patel</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sonti, Ramesh V" sort="Sonti, Ramesh V" uniqKey="Sonti R" first="Ramesh V" last="Sonti">Ramesh V. Sonti</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007</wicri:regionArea>
<wicri:noRegion>500007</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Xanthomonas oryzae pv. oryzae uses several type III secretion system (T3SS) secreted effectors, namely XopN, XopQ, XopX and XopZ, to suppress rice immune responses that are induced following treatment with cell wall degrading enzymes. Here we show that a T3SS secreted effector XopX interacts with two of the eight rice 14-3-3 proteins. Mutants of XopX that are defective in 14-3-3 binding are also defective in suppression of immune responses, suggesting that interaction with 14-3-3 proteins is required for suppression of host innate immunity. However, Agrobacterium-mediated delivery of both XopQ and XopX into rice cells results in induction of rice immune responses. These immune responses are not observed when either protein is individually delivered into rice cells. XopQ-XopX-induced rice immune responses are not observed with a XopX mutant that is defective in 14-3-3 binding. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicate that XopQ and XopX interact with each other. A screen for Xanthomonas effectors that can suppress XopQ-XopX-induced rice immune responses led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of Xanthomonas T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32654337</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14924</ELocationID>
<Abstract>
<AbstractText>Xanthomonas oryzae pv. oryzae uses several type III secretion system (T3SS) secreted effectors, namely XopN, XopQ, XopX and XopZ, to suppress rice immune responses that are induced following treatment with cell wall degrading enzymes. Here we show that a T3SS secreted effector XopX interacts with two of the eight rice 14-3-3 proteins. Mutants of XopX that are defective in 14-3-3 binding are also defective in suppression of immune responses, suggesting that interaction with 14-3-3 proteins is required for suppression of host innate immunity. However, Agrobacterium-mediated delivery of both XopQ and XopX into rice cells results in induction of rice immune responses. These immune responses are not observed when either protein is individually delivered into rice cells. XopQ-XopX-induced rice immune responses are not observed with a XopX mutant that is defective in 14-3-3 binding. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicate that XopQ and XopX interact with each other. A screen for Xanthomonas effectors that can suppress XopQ-XopX-induced rice immune responses led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of Xanthomonas T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deb</LastName>
<ForeName>Sohini</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Palash</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Hitendra K</ForeName>
<Initials>HK</Initials>
<AffiliationInfo>
<Affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sonti</LastName>
<ForeName>Ramesh V</ForeName>
<Initials>RV</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4845-0601</Identifier>
<AffiliationInfo>
<Affiliation>CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GAP0444</GrantID>
<Agency>Department of Science and Technology, Government of India</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>BSC0117</GrantID>
<Agency>Council of Scientific and Industrial Research</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>MLP0121</GrantID>
<Agency>Council of Scientific and Industrial Research</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">14-3-3 protein</Keyword>
<Keyword MajorTopicYN="N">Xanthomonas oryzae pv. oryzae</Keyword>
<Keyword MajorTopicYN="N">XopQ</Keyword>
<Keyword MajorTopicYN="N">XopX</Keyword>
<Keyword MajorTopicYN="N">effector</Keyword>
<Keyword MajorTopicYN="N">resistance</Keyword>
<Keyword MajorTopicYN="N">rice</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32654337</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14924</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adam, L. and Somerville, S.C. (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J. 9, 341-356.</Citation>
</Reference>
<Reference>
<Citation>Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410.</Citation>
</Reference>
<Reference>
<Citation>Aritua, V., Harrison, J., Sapp, M., Buruchara, R., Smith, J. and Studholme, D.J. (2015) Genome sequencing reveals a new lineage associated with lablab bean and genetic exchange between Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans. Front. Microbiol. 6, 1080.</Citation>
</Reference>
<Reference>
<Citation>Badel, J.L., Shimizu, R., Oh, H.S. and Collmer, A. (2006) A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol. Plant Microbe Interact. 19, 99-111.</Citation>
</Reference>
<Reference>
<Citation>Bolte, S. and Cordelieres, F.P. (2006) A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213-232.</Citation>
</Reference>
<Reference>
<Citation>Chanclud, E., Kisiala, A., Emery, N.R., Chalvon, V., Ducasse, A., Romiti-Michel, C., Gravot, A., Kroj, T. and Morel, J.B. (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog. 12, e1005457.</Citation>
</Reference>
<Reference>
<Citation>Chen, F., Li, Q., Sun, L. and He, Z. (2006) The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res. 13, 53-63.</Citation>
</Reference>
<Reference>
<Citation>Chen, Z., Chen, T., Sathe, A.P., He, Y., Zhang, X.B. and Wu, J.L. (2018) Identification of a novel semi-dominant spotted-leaf mutant with enhanced resistance to Xanthomonas oryzae pv. oryzae in rice. Int. J. Mol. Sci. 19, 3766.</Citation>
</Reference>
<Reference>
<Citation>Cheong, H., Kim, C.-Y., Jeon, J.-S., Lee, B.-M., Sun Moon, J. and Hwang, I. (2013) Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice. PLoS One, 8, e73346.</Citation>
</Reference>
<Reference>
<Citation>Chern, M., Fitzgerald, H.A., Canlas, P.E., Navarre, D.A. and Ronald, P.C. (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant Microbe Interact. 18, 511-520.</Citation>
</Reference>
<Reference>
<Citation>Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803-814.</Citation>
</Reference>
<Reference>
<Citation>Chittoor, J.M., Leach, J.E. and White, F.F. (1997) Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol. Plant Microbe Interact. 10, 861-871.</Citation>
</Reference>
<Reference>
<Citation>Cotelle, V. and Leonhardt, N. (2015) 14-3-3 proteins in guard cell signaling. Front. Plant Sci. 6, 1210.</Citation>
</Reference>
<Reference>
<Citation>Cotelle, V., Meek, S.E., Provan, F., Milne, F.C., Morrice, N. and Mackintosh, C. (2000) 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J. 19, 2869-2876.</Citation>
</Reference>
<Reference>
<Citation>Curtis, M.D. and Grossniklaus, U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462-469.</Citation>
</Reference>
<Reference>
<Citation>Deb, S., Gupta, M.K., Patel, H.K. and Sonti, R.V. (2019) Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein. Mol. Plant Pathol, 20, 976-989.</Citation>
</Reference>
<Reference>
<Citation>Dubrow, Z., Sunitha, S., Kim, J.G. et al. (2018) Tomato 14-3-3 proteins are required for Xv3 disease resistance and interact with a subset of Xanthomonas euvesicatoria effectors. Mol. Plant Microbe Interact, 31, 1301-1311.</Citation>
</Reference>
<Reference>
<Citation>Gehl, C., Waadt, R., Kudla, J., Mendel, R.R. and Hansch, R. (2009) New GATEWAY vectors for high throughput analyses of protein-protein interactions by bimolecular fluorescence complementation. Mol. Plant, 2, 1051-1058.</Citation>
</Reference>
<Reference>
<Citation>Gietz, R.D. and Schiestl, R.H. (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31-34.</Citation>
</Reference>
<Reference>
<Citation>Girija, A.M., Kinathi, B.K., Madhavi, M.B., Ramesh, P., Vungarala, S., Patel, H.K. and Sonti, R.V. (2017) Rice leaf transcriptional profiling suggests a functional interplay between Xanthomonas oryzae pv. oryzae lipopolysaccharide and extracellular polysaccharide in modulation of defense responses during infection. Mol .Plant Microbe Interact. 30, 16-27.</Citation>
</Reference>
<Reference>
<Citation>Giska, F., Lichocka, M., Piechocki, M., Dadlez, M., Schmelzer, E., Hennig, J. and Krzymowska, M. (2013) Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae, creates a binding site for host 14-3-3 proteins. Plant Physiol. 161, 2049-2061.</Citation>
</Reference>
<Reference>
<Citation>Gupta, M.K., Nathawat, R., Sinha, D., Haque, A.S., Sankaranarayanan, R. and Sonti, R.V. (2015) Mutations in the predicted active site of Xanthomonas oryzae pv. oryzae XopQ differentially affect virulence, suppression of host innate immunity, and induction of the HR in a nonhost plant. Mol. Plant Microbe Interact. 28, 195-206.</Citation>
</Reference>
<Reference>
<Citation>Hajri, A., Brin, C., Hunault, G., Lardeux, F., Lemaire, C., Manceau, C., Boureau, T. and Poussier, S. (2009) A "repertoire for repertoire" hypothesis: repertoires of type three effectors are candidate determinants of host specificity in Xanthomonas. PLoS One, 4, e6632.</Citation>
</Reference>
<Reference>
<Citation>Hauck, P., Thilmony, R. and He, S.Y. (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA, 100, 8577-8582.</Citation>
</Reference>
<Reference>
<Citation>Innes, R.W., Hirose, M.A. and Kuempel, P.L. (1988) Induction of nitrogen-fixing nodules on clover requires only 32 kilobase pairs of DNA from the Rhizobium trifolii symbiosis plasmid. J. Bacteriol. 170, 3793-3802.</Citation>
</Reference>
<Reference>
<Citation>Ishikawa, K., Yamaguchi, K., Sakamoto, K., Yoshimura, S., Inoue, K., Tsuge, S., Kojima, C. and Kawasaki, T. (2014) Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nat. Commun. 5, 5430.</Citation>
</Reference>
<Reference>
<Citation>Jalan, N., Kumar, D., Yu, F., Jones, J.B., Graham, J.H. and Wang, N. (2013) Complete genome sequence of Xanthomonas citri subsp. citri Strain Aw12879, a restricted-host-range citrus canker-causing bacterium. Genome Announc. 1, e00235-13.</Citation>
</Reference>
<Reference>
<Citation>James, P., Halladay, J. and Craig, E.A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics, 144, 1425-1436.</Citation>
</Reference>
<Reference>
<Citation>Jha, G., Patel, H.K., Dasgupta, M., Palaparthi, R. and Sonti, R.V. (2010) Transcriptional profiling of rice leaves undergoing a hypersensitive response like reaction induced by Xanthomonas oryzae pv. oryzae cellulase. Rice, 3, 1-21.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.D. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-329.</Citation>
</Reference>
<Reference>
<Citation>Karimi, M., Inze, D. and Depicker, A. (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193-195.</Citation>
</Reference>
<Reference>
<Citation>Kearney, B. and Staskawicz, B.J. (1990) Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature, 346, 385-386.</Citation>
</Reference>
<Reference>
<Citation>Lazo, G.R., Stein, P.A. and Ludwig, R.A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology, 9, 963-967.</Citation>
</Reference>
<Reference>
<Citation>Li, S., Wang, Y., Wang, S., Fang, A., Wang, J., Liu, L., Zhang, K., Mao, Y. and Sun, W. (2015) The type III effector AvrBs2 in Xanthomonas oryzae pv. oryzicola suppresses rice immunity and promotes disease development. Mol. Plant Microbe Interact. 28, 869-880.</Citation>
</Reference>
<Reference>
<Citation>Li, W., Yadeta, K.A., Elmore, J.M. and Coaker, G. (2013) The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner. Plant Physiol. 161, 2062-2074.</Citation>
</Reference>
<Reference>
<Citation>Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.</Citation>
</Reference>
<Reference>
<Citation>Lozano-Duran, R. and Robatzek, S. (2015) 14-3-3 proteins in plant-pathogen interactions. Mol. Plant Microbe Interact. 28, 511-518.</Citation>
</Reference>
<Reference>
<Citation>Manosalva, P.M., Bruce, M. and Leach, J.E. (2011) Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. Plant J. 68, 777-787.</Citation>
</Reference>
<Reference>
<Citation>Metz, M., Dahlbeck, D., Morales, C.Q., Al Sady, B., Clark, E.T. and Staskawicz, B.J. (2005) The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Plant J. 41, 801-814.</Citation>
</Reference>
<Reference>
<Citation>Midha, S., Bansal, K., Kumar, S., Girija, A.M., Mishra, D., Brahma, K., Laha, G.S., Sundaram, R.M., Sonti, R.V. and Patil, P.B. (2017) Population genomic insights into variation and evolution of Xanthomonas oryzae pv. oryzae. Sci. Rep. 7, 40694.</Citation>
</Reference>
<Reference>
<Citation>Miller, G. and Mittler, R. (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot. 98, 279-288.</Citation>
</Reference>
<Reference>
<Citation>Moeder, W., Barry, C.S., Tauriainen, A.A., Betz, C., Tuomainen, J., Utriainen, M., Grierson, D., Sandermann, H., Langebartels, C. and Kangasjärvi, J. (2002) Ethylene synthesis regulated by biphasic induction of 1-Aminocyclopropane-1-carboxylic acid synthase and 1-Aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol. 130, 1918-1926.</Citation>
</Reference>
<Reference>
<Citation>Moreira, L.M., Almeida, N.F., Potnis, N. et al. (2010) Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genom. 11, 238.</Citation>
</Reference>
<Reference>
<Citation>Oh, C.S. and Martin, G.B. (2011) Effector-triggered immunity mediated by the Pto kinase. Trends Plant Sci. 16, 132-140.</Citation>
</Reference>
<Reference>
<Citation>Potnis, N., Krasileva, K., Chow, V. et al. (2011) Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genom. 12, 146.</Citation>
</Reference>
<Reference>
<Citation>Ray, S.K., Rajeshwari, R. and Sonti, R.V. (2000) Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol. Plant Microbe Interact. 13, 394-401.</Citation>
</Reference>
<Reference>
<Citation>Saijo, Y., Loo, E.P. and Yasuda, S. (2018) Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 93, 592-613.</Citation>
</Reference>
<Reference>
<Citation>Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9, 671-675.</Citation>
</Reference>
<Reference>
<Citation>Sinha, D., Gupta, M.K., Patel, H.K., Ranjan, A. and Sonti, R.V. (2013) Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS One, 8, e75867.</Citation>
</Reference>
<Reference>
<Citation>Soto-Suarez, M., Bernal, D., Gonzalez, C., Szurek, B., Guyot, R., Tohme, J. and Verdier, V. (2010) In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1. BMC Microbiol. 10, 170.</Citation>
</Reference>
<Reference>
<Citation>Stork, W., Kim, J.G. and Mudgett, M.B. (2015) Functional Analysis of plant defense suppression and activation by the xanthomonas core type III effector XopX. Mol. Plant Microbe Interact. 28, 180-194.</Citation>
</Reference>
<Reference>
<Citation>Subramoni, S. and Sonti, R.V. (2005) Growth deficiency of a Xanthomonas oryzae pv. oryzae fur mutant in rice leaves is rescued by ascorbic acid supplementation. Mol. Plant Microbe Interact. 18, 644-651.</Citation>
</Reference>
<Reference>
<Citation>Teper, D., Salomon, D., Sunitha, S., Kim, J.G., Mudgett, M.B. and Sessa, G. (2014) Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity. Plant J. 77, 297-309.</Citation>
</Reference>
<Reference>
<Citation>Teper, D., Sunitha, S., Martin, G.B. and Sessa, G. (2015) Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10, e1064573.</Citation>
</Reference>
<Reference>
<Citation>Thieme, F., Koebnik, R., Bekel, T. et al. (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187, 7254-7266.</Citation>
</Reference>
<Reference>
<Citation>Üstün, S., Bartetzko, V. and Börnke, F. (2013) The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLoS Pathog. 9, e1003427.</Citation>
</Reference>
<Reference>
<Citation>White, F.F. and Yang, B. (2009) Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol. 150, 1677-1686.</Citation>
</Reference>
<Reference>
<Citation>Xiang, T., Zong, N., Zou, Y. et al. (2008) Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18, 74-80.</Citation>
</Reference>
<Reference>
<Citation>Yuan, Y., Zhong, S., Li, Q. et al. (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 5, 313-324.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Deb, Sohini" sort="Deb, Sohini" uniqKey="Deb S" first="Sohini" last="Deb">Sohini Deb</name>
</noRegion>
<name sortKey="Ghosh, Palash" sort="Ghosh, Palash" uniqKey="Ghosh P" first="Palash" last="Ghosh">Palash Ghosh</name>
<name sortKey="Patel, Hitendra K" sort="Patel, Hitendra K" uniqKey="Patel H" first="Hitendra K" last="Patel">Hitendra K. Patel</name>
<name sortKey="Sonti, Ramesh V" sort="Sonti, Ramesh V" uniqKey="Sonti R" first="Ramesh V" last="Sonti">Ramesh V. Sonti</name>
<name sortKey="Sonti, Ramesh V" sort="Sonti, Ramesh V" uniqKey="Sonti R" first="Ramesh V" last="Sonti">Ramesh V. Sonti</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000124 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000124 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32654337
   |texte=   Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32654337" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020